summaryrefslogtreecommitdiff
path: root/src/utils/sha1.cpp
blob: 76476df03a5b08eb7e39a17f1d014db80ea01840 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/* This code is public-domain - it is based on libcrypt
 * placed in the public domain by Wei Dai and other contributors.
 */

#include "sha1.hpp"

#define SHA1_K0 0x5a827999
#define SHA1_K20 0x6ed9eba1
#define SHA1_K40 0x8f1bbcdc
#define SHA1_K60 0xca62c1d6

const uint8_t sha1InitState[] = {
  0x01,0x23,0x45,0x67, // H0
  0x89,0xab,0xcd,0xef, // H1
  0xfe,0xdc,0xba,0x98, // H2
  0x76,0x54,0x32,0x10, // H3
  0xf0,0xe1,0xd2,0xc3  // H4
};

void sha1_init(sha1nfo *s) {
  memcpy(s->state.b,sha1InitState,HASH_LENGTH);
  s->byteCount = 0;
  s->bufferOffset = 0;
}

uint32_t sha1_rol32(uint32_t number, uint8_t bits) {
  return ((number << bits) | (number >> (32-bits)));
}

void sha1_hashBlock(sha1nfo *s) {
  uint8_t i;
  uint32_t a,b,c,d,e,t;

  a=s->state.w[0];
  b=s->state.w[1];
  c=s->state.w[2];
  d=s->state.w[3];
  e=s->state.w[4];
  for (i=0; i<80; i++) {
    if (i>=16) {
      t = s->buffer.w[(i+13)&15] ^ s->buffer.w[(i+8)&15] ^ s->buffer.w[(i+2)&15] ^ s->buffer.w[i&15];
      s->buffer.w[i&15] = sha1_rol32(t,1);
    }
    if (i<20) {
      t = (d ^ (b & (c ^ d))) + SHA1_K0;
    } else if (i<40) {
      t = (b ^ c ^ d) + SHA1_K20;
    } else if (i<60) {
      t = ((b & c) | (d & (b | c))) + SHA1_K40;
    } else {
      t = (b ^ c ^ d) + SHA1_K60;
    }
    t+=sha1_rol32(a,5) + e + s->buffer.w[i&15];
    e=d;
    d=c;
    c=sha1_rol32(b,30);
    b=a;
    a=t;
  }
  s->state.w[0] += a;
  s->state.w[1] += b;
  s->state.w[2] += c;
  s->state.w[3] += d;
  s->state.w[4] += e;
}

void sha1_addUncounted(sha1nfo *s, uint8_t data) {
  s->buffer.b[s->bufferOffset ^ 3] = data;
  s->bufferOffset++;
  if (s->bufferOffset == BLOCK_LENGTH) {
    sha1_hashBlock(s);
    s->bufferOffset = 0;
  }
}

void sha1_writebyte(sha1nfo *s, uint8_t data) {
  ++s->byteCount;
  sha1_addUncounted(s, data);
}

void sha1_write(sha1nfo *s, const char *data, size_t len) {
	for (;len--;) sha1_writebyte(s, (uint8_t) *data++);
}

void sha1_pad(sha1nfo *s) {
  // Implement SHA-1 padding (fips180-2 §5.1.1)

  // Pad with 0x80 followed by 0x00 until the end of the block
  sha1_addUncounted(s, 0x80);
  while (s->bufferOffset != 56) sha1_addUncounted(s, 0x00);

  // Append length in the last 8 bytes
  sha1_addUncounted(s, 0); // We're only using 32 bit lengths
  sha1_addUncounted(s, 0); // But SHA-1 supports 64 bit lengths
  sha1_addUncounted(s, 0); // So zero pad the top bits
  sha1_addUncounted(s, s->byteCount >> 29); // Shifting to multiply by 8
  sha1_addUncounted(s, s->byteCount >> 21); // as SHA-1 supports bitstreams as well as
  sha1_addUncounted(s, s->byteCount >> 13); // byte.
  sha1_addUncounted(s, s->byteCount >> 5);
  sha1_addUncounted(s, s->byteCount << 3);
}

uint8_t* sha1_result(sha1nfo *s) {
  int i;
  // Pad to complete the last block
  sha1_pad(s);

  // Swap byte order back
  for (i=0; i<5; i++) {
    uint32_t a,b;
    a=s->state.w[i];
    b=a<<24;
    b|=(a<<8) & 0x00ff0000;
    b|=(a>>8) & 0x0000ff00;
    b|=a>>24;
    s->state.w[i]=b;
  }

  // Return pointer to hash (20 characters)
  return s->state.b;
}

#define HMAC_IPAD 0x36
#define HMAC_OPAD 0x5c

void sha1_initHmac(sha1nfo *s, const uint8_t* key, int keyLength) {
  uint8_t i;
  memset(s->keyBuffer, 0, BLOCK_LENGTH);
  if (keyLength > BLOCK_LENGTH) {
    // Hash long keys
    sha1_init(s);
    for (;keyLength--;) sha1_writebyte(s, *key++);
    memcpy(s->keyBuffer, sha1_result(s), HASH_LENGTH);
  } else {
    // Block length keys are used as is
    memcpy(s->keyBuffer, key, keyLength);
  }
  // Start inner hash
  sha1_init(s);
  for (i=0; i<BLOCK_LENGTH; i++) {
    sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_IPAD);
  }
}

uint8_t* sha1_resultHmac(sha1nfo *s) {
  uint8_t i;
  // Complete inner hash
  memcpy(s->innerHash,sha1_result(s),HASH_LENGTH);
  // Calculate outer hash
  sha1_init(s);
  for (i=0; i<BLOCK_LENGTH; i++) sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_OPAD);
  for (i=0; i<HASH_LENGTH; i++) sha1_writebyte(s, s->innerHash[i]);
  return sha1_result(s);
}