1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
|
#ifndef SOCKET_HANDLER_INCLUDED
# define SOCKET_HANDLER_INCLUDED
#include <network/socket_handler.hpp>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <memory>
#include <string>
#include <list>
#include "louloulibs.h"
#ifdef CARES_FOUND
# include <ares.h>
#endif
#ifdef BOTAN_FOUND
# include <botan/botan.h>
# include <botan/tls_client.h>
/**
* A very simple credential manager that accepts any certificate.
*/
class Permissive_Credentials_Manager: public Botan::Credentials_Manager
{
public:
void verify_certificate_chain(const std::string& type,
const std::string& purported_hostname,
const std::vector<Botan::X509_Certificate>&);
};
#endif // BOTAN_FOUND
/**
* An interface, with a series of callbacks that should be implemented in
* subclasses that deal with a socket. These callbacks are called on various events
* (read/write/timeout, etc) when they are notified to a poller
* (select/poll/epoll etc)
*/
class TCPSocketHandler: public SocketHandler
{
protected:
~TCPSocketHandler();
public:
explicit TCPSocketHandler(std::shared_ptr<Poller> poller);
/**
* Connect to the remote server, and call on_connected() if this
* succeeds. If tls is true, we set use_tls to true and will also call
* start_tls() when the connection succeeds.
*/
void connect(const std::string& address, const std::string& port, const bool tls);
void connect() override final;
/**
* Reads raw data from the socket. And pass it to parse_in_buffer()
* If we are using TLS on this connection, we call tls_recv()
*/
void on_recv() override final;
/**
* Write as much data from out_buf as possible, in the socket.
*/
void on_send() override final;
/**
* Add the given data to out_buf and tell our poller that we want to be
* notified when a send event is ready.
*
* This can be overriden if we want to modify the data before sending
* it. For example if we want to encrypt it.
*/
void send_data(std::string&& data);
/**
* Watch the socket for send events, if our out buffer is not empty.
*/
void send_pending_data();
/**
* Close the connection, remove us from the poller
*/
void close();
/**
* Called by a TimedEvent, when the connection did not succeed or fail
* after a given time.
*/
void on_connection_timeout();
/**
* Called when the connection is successful.
*/
virtual void on_connected() = 0;
/**
* Called when the connection fails. Not when it is closed later, just at
* the connect() call.
*/
virtual void on_connection_failed(const std::string& reason) = 0;
/**
* Called when we detect a disconnection from the remote host.
*/
virtual void on_connection_close(const std::string& error) = 0;
/**
* Handle/consume (some of) the data received so far. The data to handle
* may be in the in_buf buffer, or somewhere else, depending on what
* get_receive_buffer() returned. If some data is used from in_buf, it
* should be truncated, only the unused data should be left untouched.
*
* The size argument is the size of the last chunk of data that was added to the buffer.
*/
virtual void parse_in_buffer(const size_t size) = 0;
bool is_connected() const override final;
bool is_connecting() const;
#ifdef CARES_FOUND
void on_hostname4_resolved(int status, struct hostent* hostent);
void on_hostname6_resolved(int status, struct hostent* hostent);
void free_cares_addrinfo();
void fill_ares_addrinfo4(const struct hostent* hostent);
void fill_ares_addrinfo6(const struct hostent* hostent);
#endif
private:
/**
* Initialize the socket with the parameters contained in the given
* addrinfo structure.
*/
void init_socket(const struct addrinfo* rp);
/**
* Reads from the socket into the provided buffer. If an error occurs
* (read returns <= 0), the handling of the error is done here (close the
* connection, log a message, etc).
*
* Returns the value returned by ::recv(), so the buffer should not be
* used if it’s not positive.
*/
ssize_t do_recv(void* recv_buf, const size_t buf_size);
/**
* Reads data from the socket and calls parse_in_buffer with it.
*/
void plain_recv();
/**
* Mark the given data as ready to be sent, as-is, on the socket, as soon
* as we can.
*/
void raw_send(std::string&& data);
#ifdef BOTAN_FOUND
/**
* Create the TLS::Client object, with all the callbacks etc. This must be
* called only when we know we are able to send TLS-encrypted data over
* the socket.
*/
void start_tls();
/**
* An additional step to pass the data into our tls object to decrypt it
* before passing it to parse_in_buffer.
*/
void tls_recv();
/**
* Pass the data to the tls object in order to encrypt it. The tls object
* will then call raw_send as a callback whenever data as been encrypted
* and can be sent on the socket.
*/
void tls_send(std::string&& data);
/**
* Called by the tls object that some data has been decrypt. We call
* parse_in_buffer() to handle that unencrypted data.
*/
void tls_data_cb(const Botan::byte* data, size_t size);
/**
* Called by the tls object to indicate that some data has been encrypted
* and is now ready to be sent on the socket as is.
*/
void tls_output_fn(const Botan::byte* data, size_t size);
/**
* Called by the tls object to indicate that a TLS alert has been
* received. We don’t use it, we just log some message, at the moment.
*/
void tls_alert_cb(Botan::TLS::Alert alert, const Botan::byte*, size_t);
/**
* Called by the tls object at the end of the TLS handshake. We don't do
* anything here appart from logging the TLS session information.
*/
bool tls_handshake_cb(const Botan::TLS::Session& session);
/**
* Called whenever the tls session goes from inactive to active. This
* means that the handshake has just been successfully done, and we can
* now proceed to send any available data into our tls object.
*/
void on_tls_activated();
#endif // BOTAN_FOUND
/**
* Where data is added, when we want to send something to the client.
*/
std::list<std::string> out_buf;
/**
* Keep the details of the addrinfo that triggered a EINPROGRESS error when
* connect()ing to it, to reuse it directly when connect() is called
* again.
*/
struct addrinfo addrinfo;
struct sockaddr_in6 ai_addr;
socklen_t ai_addrlen;
protected:
/**
* Where data read from the socket is added until we can extract a full
* and meaningful “message” from it.
*
* TODO: something more efficient than a string.
*/
std::string in_buf;
/**
* Whether we are using TLS on this connection or not.
*/
bool use_tls;
/**
* Provide a buffer in which data can be directly received. This can be
* used to avoid copying data into in_buf before using it. If no buffer
* needs to be provided, nullptr is returned (the default implementation
* does that), in that case our internal in_buf will be used to save the
* data until it can be used by parse_in_buffer().
*/
virtual void* get_receive_buffer(const size_t size) const;
/**
* Hostname we are connected/connecting to
*/
std::string address;
/**
* Port we are connected/connecting to
*/
std::string port;
bool connected;
bool connecting;
#ifdef CARES_FOUND
bool resolving;
/**
* Whether or not the DNS resolution was successfully done
*/
bool resolved;
bool resolved4;
bool resolved6;
/**
* When using c-ares to resolve the host asynchronously, we need the
* c-ares callback to fill a structure (a struct addrinfo, for
* compatibility with getaddrinfo and the rest of the code that works when
* c-ares is not used) with all returned values (for example an IPv6 and
* an IPv4). The next call of connect() will then try all these values
* (exactly like we do with the result of getaddrinfo) and save the one
* that worked (or returned EINPROGRESS) in the other struct addrinfo (see
* the members addrinfo, ai_addrlen, and ai_addr).
*/
struct addrinfo* cares_addrinfo;
std::string cares_error;
#endif // CARES_FOUND
private:
TCPSocketHandler(const TCPSocketHandler&) = delete;
TCPSocketHandler(TCPSocketHandler&&) = delete;
TCPSocketHandler& operator=(const TCPSocketHandler&) = delete;
TCPSocketHandler& operator=(TCPSocketHandler&&) = delete;
#ifdef BOTAN_FOUND
/**
* Botan stuff to manipulate a TLS session.
*/
static Botan::AutoSeeded_RNG rng;
static Permissive_Credentials_Manager credential_manager;
static Botan::TLS::Policy policy;
static Botan::TLS::Session_Manager_In_Memory session_manager;
/**
* We use a unique_ptr because we may not want to create the object at
* all. The Botan::TLS::Client object generates a handshake message and
* calls the output_fn callback with it as soon as it is created.
* Therefore, we do not want to create it if we do not intend to send any
* TLS-encrypted message. We create the object only when needed (for
* example after we have negociated a TLS session using a STARTTLS
* message, or stuf like that).
*
* See start_tls for the method where this object is created.
*/
std::unique_ptr<Botan::TLS::Client> tls;
/**
* An additional buffer to keep data that the user wants to send, but
* cannot because the handshake is not done.
*/
std::string pre_buf;
#endif // BOTAN_FOUND
};
#endif // SOCKET_HANDLER_INCLUDED
|