/* This code is public-domain - it is based on libcrypt * placed in the public domain by Wei Dai and other contributors. */ #include "sha1.hpp" #define SHA1_K0 0x5a827999 #define SHA1_K20 0x6ed9eba1 #define SHA1_K40 0x8f1bbcdc #define SHA1_K60 0xca62c1d6 const uint8_t sha1InitState[] = { 0x01,0x23,0x45,0x67, // H0 0x89,0xab,0xcd,0xef, // H1 0xfe,0xdc,0xba,0x98, // H2 0x76,0x54,0x32,0x10, // H3 0xf0,0xe1,0xd2,0xc3 // H4 }; void sha1_init(sha1nfo *s) { memcpy(s->state.b,sha1InitState,HASH_LENGTH); s->byteCount = 0; s->bufferOffset = 0; } uint32_t sha1_rol32(uint32_t number, uint8_t bits) { return ((number << bits) | (number >> (32-bits))); } void sha1_hashBlock(sha1nfo *s) { uint8_t i; uint32_t a,b,c,d,e,t; a=s->state.w[0]; b=s->state.w[1]; c=s->state.w[2]; d=s->state.w[3]; e=s->state.w[4]; for (i=0; i<80; i++) { if (i>=16) { t = s->buffer.w[(i+13)&15] ^ s->buffer.w[(i+8)&15] ^ s->buffer.w[(i+2)&15] ^ s->buffer.w[i&15]; s->buffer.w[i&15] = sha1_rol32(t,1); } if (i<20) { t = (d ^ (b & (c ^ d))) + SHA1_K0; } else if (i<40) { t = (b ^ c ^ d) + SHA1_K20; } else if (i<60) { t = ((b & c) | (d & (b | c))) + SHA1_K40; } else { t = (b ^ c ^ d) + SHA1_K60; } t+=sha1_rol32(a,5) + e + s->buffer.w[i&15]; e=d; d=c; c=sha1_rol32(b,30); b=a; a=t; } s->state.w[0] += a; s->state.w[1] += b; s->state.w[2] += c; s->state.w[3] += d; s->state.w[4] += e; } void sha1_addUncounted(sha1nfo *s, uint8_t data) { s->buffer.b[s->bufferOffset ^ 3] = data; s->bufferOffset++; if (s->bufferOffset == BLOCK_LENGTH) { sha1_hashBlock(s); s->bufferOffset = 0; } } void sha1_writebyte(sha1nfo *s, uint8_t data) { ++s->byteCount; sha1_addUncounted(s, data); } void sha1_write(sha1nfo *s, const char *data, size_t len) { for (;len--;) sha1_writebyte(s, (uint8_t) *data++); } void sha1_pad(sha1nfo *s) { // Implement SHA-1 padding (fips180-2 §5.1.1) // Pad with 0x80 followed by 0x00 until the end of the block sha1_addUncounted(s, 0x80); while (s->bufferOffset != 56) sha1_addUncounted(s, 0x00); // Append length in the last 8 bytes sha1_addUncounted(s, 0); // We're only using 32 bit lengths sha1_addUncounted(s, 0); // But SHA-1 supports 64 bit lengths sha1_addUncounted(s, 0); // So zero pad the top bits sha1_addUncounted(s, s->byteCount >> 29); // Shifting to multiply by 8 sha1_addUncounted(s, s->byteCount >> 21); // as SHA-1 supports bitstreams as well as sha1_addUncounted(s, s->byteCount >> 13); // byte. sha1_addUncounted(s, s->byteCount >> 5); sha1_addUncounted(s, s->byteCount << 3); } uint8_t* sha1_result(sha1nfo *s) { int i; // Pad to complete the last block sha1_pad(s); // Swap byte order back for (i=0; i<5; i++) { uint32_t a,b; a=s->state.w[i]; b=a<<24; b|=(a<<8) & 0x00ff0000; b|=(a>>8) & 0x0000ff00; b|=a>>24; s->state.w[i]=b; } // Return pointer to hash (20 characters) return s->state.b; } #define HMAC_IPAD 0x36 #define HMAC_OPAD 0x5c void sha1_initHmac(sha1nfo *s, const uint8_t* key, int keyLength) { uint8_t i; memset(s->keyBuffer, 0, BLOCK_LENGTH); if (keyLength > BLOCK_LENGTH) { // Hash long keys sha1_init(s); for (;keyLength--;) sha1_writebyte(s, *key++); memcpy(s->keyBuffer, sha1_result(s), HASH_LENGTH); } else { // Block length keys are used as is memcpy(s->keyBuffer, key, keyLength); } // Start inner hash sha1_init(s); for (i=0; ikeyBuffer[i] ^ HMAC_IPAD); } } uint8_t* sha1_resultHmac(sha1nfo *s) { uint8_t i; // Complete inner hash memcpy(s->innerHash,sha1_result(s),HASH_LENGTH); // Calculate outer hash sha1_init(s); for (i=0; ikeyBuffer[i] ^ HMAC_OPAD); for (i=0; iinnerHash[i]); return sha1_result(s); }